引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 48次   下载 51 本文二维码信息
码上扫一扫!
分享到: 微信 更多
冷害对黄瓜光系统Ⅱ潜在活性的影响
卢 苗1, 完香蓓1, 袁凯凯,等1
西北农林科技大学 机械与电子工程学院,农业农村部农业物联网重点实验室,陕西省农业信息感知与智能服务重点实验室
摘要:
【目的】分析不同低温环境对黄瓜光系统Ⅱ(PSⅡ)潜在活性Fv/Fo的影响,为黄瓜冷害的无损诊断提供技术支持。【方法】试验在光强140 μmol/(m2·s)、CO2浓度为400 μmol/mol及昼/夜光周期为14 h/10 h、空气相对湿度为60%/50%的CO2人工气候箱中进行,以16株不同Fv/Fo值(4.5~6.0)的黄瓜幼苗为试验样本,平均分组,分别于8,10,12和14 ℃低温条件下连续培养8 d,每天16:00采集黄瓜叶片荧光参数(Fv/Fo),以其代表黄瓜PSⅡ潜在活性,分析低温对黄瓜叶片生理状态的影响,并采用量子遗传-支持向量机回归算法建立低温环境下黄瓜叶片Fv/Fo值预测模型。【结果】培养温度、持续时间和低温处理前黄瓜Fv/Fo值共同影响黄瓜幼苗PSⅡ潜在活性(Fv/Fo)对低温的响应。低温环境下,黄瓜幼苗Fv/Fo值均在0~2 d快速下降,后随低温持续时间的延长缓慢降低,但温度越低下降速度越快。低温处理前Fv/Fo值越大,遭受低温胁迫时,黄瓜叶片PSⅡ反应中心受到的损伤越小,其对低温环境的应对能力越强。以培养温度、持续时间和低温处理前黄瓜叶片Fv/Fo为输入,当前Fv/Fo为输出建立黄瓜叶片Fv/Fo预测模型,模型在训练集和预测集上的R2分别为0.946 9和0.949 7,RMSE分别为0.231 6和0.227 6,MAE为0.316 8和0.295 2。【结论】所构建的预测模型可实现低温环境下的黄瓜叶片Fv/Fo的精准预测,为作物早期冷害胁迫的无损诊断奠定了基础。
关键词:  黄瓜冷害  叶绿素荧光参数  量子遗传  支持向量机回归
DOI:
分类号:
基金项目:国家重点研发计划项目(2020YFD1100602);国家大宗蔬菜产业技术体系岗位专家任务项目(CARS-23-C06);陕西省重点研发计划项目(2021ZDLNY03-02);中央高校基本科研业务费专项 (2452020292)
Influence of chilling injury on potential activity of cucumber photosystem Ⅱ
LU Miao,WAN Xiangbei,YUAN Kaikai,et al
Abstract:
【Objective】This study analyzed the effects of different low temperature environments on the potential activity Fv/Fo of cucumber photosystem (PSⅡ),to provide support for non destructive diagnosis of cucumber chilling injury.【Method】This experiment was carried out in CO2 artificial climate chambers with light intensity of 140 μmol/(m2·s),CO2 concentration of 400 μmol/mol,photoperiod of 14 h/10 h,and day/night relative humidity of 60%/50%.A total of 16 cucumber seedlings with different Fv/Fo values (4.5-6.0) were divided into 4 groups and cultivated continuously for 8 days under low temperature conditions of 8,10,12 and 14 ℃ in 4 climate chambers.The fluorescence parameters (Fv/Fo) of cucumber seedling leaves,representing potential activity of cucumber PSⅡ,were collected at 16:00 every day.The effect of low temperature on the physiological state of cucumber leaves was analyzed,and the prediction model of cucumber Fv/Fo under low temperature environment was built based on the Quantum Genetic Support Vector Regression algorithm.【Result】Temperature,duration,and Fv/Fo before low temperature treatment influenced the response of Fv/Fo to low temperature.In low temperature environments,the Fv/Fo value of cucumber seedlings decreased rapidly during 0-2 d,and then decreased slowly afterwards.The temperature and decline rate of Fv/Fo were negatively correlated.Higher Fv/Fo value before low temperature treatment had less damage to the PSⅡ reaction center of cucumber leaves with stronger resistance when exposed to low temperature stress.The inputs of prediction model were temperature,duration,and Fv/Fo before low temperature treatment and the output was current Fv/Fo.The training set and prediction set had R2 of 0.946 9 and 0.949 7,RMSE values of 0.231 6 and 0.227 6,and MAE values of 0.316 8 and 0.295 2,respectively.【Conclusion】The established model was able to achieve accurate prediction of Fv/Fo for seedlings in low temperature,providing a potential method for non destructive analysis and diagnosis of cucumber chilling injury.
Key words:  chilling injury of cucumber  chlorophyll fluorescence parameter  Quantum Genetics  Support Vector Regression